Quick Start
Get up and running with FluxLoop in 5 minutes.
Step 1: Create a Project
Initialize a new FluxLoop project:
fluxloop init scenario --name my-agent
cd my-agent
This creates:
my-agent/
├── fluxloop.yaml # Main configuration file
├── .env # Environment variables
├── src/
│ └── agent.py # Sample agent code
└── scenarios/ # Test scenarios
Step 2: Instrument Your Agent
Add the @fluxloop.agent() decorator to your agent function in src/agent.py:
import fluxloop
@fluxloop.agent()
def run(input_text: str) -> str:
"""Your agent logic"""
# Process the input
result = process_input(input_text)
return result
Step 3: Authenticate
Log in to the Web Platform:
fluxloop auth login
# Enter your API key from app.fluxloop.ai
Step 4: Define Scenarios
Edit fluxloop.yaml to define your test personas and base inputs:
# fluxloop.yaml
personas:
- name: novice_user
description: A user new to the system
base_inputs:
- input: "How do I get started?"
expected_intent: help
Step 5: Generate Inputs
Create diverse test case variations:
fluxloop generate --limit 50
This creates a local test bundle with 50 variations based on your personas.
Step 6: Run Test
Execute your agent with the generated inputs:
fluxloop test
Results are saved locally in the results/ directory.
Step 7: View Results in the Cloud
Upload and analyze your results on the Web Platform:
fluxloop sync upload
Open the provided link to results.fluxloop.ai to see:
- Visual conversation traces
- Performance metrics (latency, tokens, cost)
- Success rate analysis
What You Get
After running a test and uploading, you'll have:
- Local Results - Structured JSONL data in
./results/ - Cloud Dashboard - Interactive visualization and team collaboration
- Performance Insights - Automatic analysis of agent behavior
Next Steps
- Core Concepts - Understand the FluxLoop philosophy
- CLI Reference - Explore all commands
- Claude Code Integration - Test agents directly in your IDE
- Web Platform Guide - Learn about cloud features
Congratulations! 🎉 You've run your first FluxLoop test.