Synthetic Input Generation
Generate realistic test inputs using personas and AI-powered synthesis.
What is Synthetic Input Generation?
Synthetic input generation creates realistic test data programmatically, rather than manually writing each test case. Using personas as templates, FluxLoop generates diverse, realistic inputs that mimic how real users interact with your AI agent.
Manual vs Synthetic Testing
Manual Testing:
# tests/manual_inputs.yaml
inputs:
- "How do I start?"
- "What are the features?"
- "How much does it cost?"
# ... writing 100+ inputs by hand 😩
Synthetic Testing:
# personas.yaml
personas:
- novice_user
- expert_user
- frustrated_user
# Generate 100 diverse inputs automatically
$ fluxloop inputs generate --count 100
✅ Generated 100 inputs from 3 personas
Benefits
1. Scale Testing
Generate hundreds or thousands of test inputs in minutes:
# Manual: Days to write 1000 inputs
# Synthetic: Minutes to generate 1000 inputs
fluxloop inputs generate --count 1000
2. Uncover Edge Cases
Personas generate unexpected variations you wouldn't think of manually:
# Manual inputs (predictable)
- "How do I reset my password?"
- "How do I change my password?"
# Synthetic inputs (diverse)
- "password reset???"
- "i forgot my pwd help"
- "Can't login. Need to change credentials ASAP"
- "where is option for changing authentication"
- "🔐 reset?"
3. Maintain Test Coverage
As your product evolves, regenerate inputs automatically:
# Product adds new features
$ update_personas.sh
# Regenerate tests
$ fluxloop inputs generate --refresh